

Deposition Tools within the Microelectronics and Nanotechnology Group at the Georgia Tech Research Institute

David W. Stollberg, Ph.D., P.E. Research Engineer and Adjunct Faculty

Thin Film Deposition

- Two major categories: Physical and chemical vapor deposition
 - Physical: movement of constituent atoms/molecules from source to a physical condensation on a substrate in an ~ line of site manner, usually in a low pressure/vacuum regime
 - Chemical: gas flow of chemical species which must decompose/react (thermal, plasma, light, catalysis assist) to release constituent elements
- PVD
 - Evaporation (i.e., heating) of source material: thermal, electron-beam
 - Ablation of source material: sputtering (high energy ions), pulsed laser
 - Typically solid elemental or compound source materials
- CVD
 - Mass flow controllers, pressure flow controllers
 - Typically metalorganic or hydride gases

Evaporators In Baker Cleanroom

• Veeco

Georgia

- Manual pump down
- Cryo-Torr 8
- Four pocket E-beam
- Al, Au, Ni Ti

Dual Chamber

- Auto pump down
- Cryo-Torr 8
- Four pocket E-beam
- AuGe, Ni, Au, Ti

Sputtering Systems In Baker Cleanroom

Sputter 1

- Perkin-Elmer 2400
- Auto pump down
- Cryo-Torr 8
- Three position plus one etch
- RF diode with one S-gun
- Nominal 4" dia targets
- Sputter 2
 - Perkin-Elmer 2400
 - Auto pump down
 - Cryo-Torr 8

Research

Institute

- Three position plus one etch
- DC and RF Magnetrom
- Nominal 8" dia targets

Angstrom Engineering EvoVac

Georgia Research Tech Institute

Angstrom Engineering EvoVac

- Two 4 pocket E-beam crucible sources
- 4 resistive thermal evaporation sources
- 1 RF sputter source
- 1 DC sputter source
- Integrated Glove Box
- See Stephan Turano for training or help
- Users: Stephan, Jack, Graham

EvoVac Information

- Pump down time: 10-12 minutes to reach 1.0x10⁻⁶ Torr
- 2.0x10⁻⁸ Torr possible after a few hours
- Rates 0.5-10Å/s possible. Recommend 4.0Å/s max for E-beam
- Sample size up to 6" x6" square

- Each new material takes a few trial runs to determine best settings.
- Smaller material pellets sizes (1/8" pellets) are preferred

E-beam evaporation with the EvoVac

- Current E-beam Materials:
 - Nickel
 - Iron
 - Copper
 - Titanium
 - Molybdenum
 - Chromium
- Past and Future materials
 - Aluminum

linstituta

- Cobalt
- Gold
- Silver

Georgia

Many other metals, semi-metals and dielectrics

- E-beam Crucible size:
 - Pocket volume: 7cc
 - Liner volume: 4.4cc
 - A: 1.167"
 - B: 0.563"
 - C:0.093"

Material Deposition by Evaporation

- Guide to material evaporation: <u>Shared drive</u> <u>link</u>
- General information on evaporation of 350+ materials (use as a general guideline!)

lnætitute

Georgia

	А	В	С	D	E	F	G	Н	1	J	K	L	Μ	N	0
1			MP			Ter	np.(°C) for Gi	ven							
2			(°C)			V	ap. Press. (To	rr)	Evaporation Techniques						
3											Therma	I Sources			
4	Material	Symbol		s/D	g/cm ³	10^-8	10^-6	10^-4	E-Beam	Boat	Coil	Basket	Crucible	Sputter	Comments
5	Aluminum	AI	660		2.7	677	821	1010	Ex	TiB ₂ ,W	w	w	TiB ₂ -BN, ZrB ₂ , BN	RF, DC	Alloys and wets. Stranded W is best.
6	Aluminum Antimonide	AISb	1080		4.3	-			-	-		-	-	RF	-
7	Aluminum Arsenide	AIAs	1600		3.7	-		~1300	-		-	-		RF	-
8	Aluminum Bromide	AIBr ₃	97		2.64	-	-	~50	-	Мо	-	-	Gr	RF	
9	Aluminum Carbide	Al ₄ C ₃	~1400	D	2.36	-	-	~800	F	-	-	-	-	RF	n = 2.7
10	Aluminum, 2% Copper	AI2%Cu	640		2.82	-	-	-	-	-		-	-	RF, DC	Wire feed and flash. Difficult from dual sources.
11	Aluminum Fluoride	AIF3	1291	S	2.88	410	490	700	P	Mo, W, Ta	-	-	Gr	RF	-
12	Aluminum Nitride	AIN	>2200	s	3.26	-	-	~1750	F	-	-	-	-	RF, RF-R	Decomposes. Reactive evap in 10 ⁻ ³ T N2 with glow discharge.
12	Aluminum Oxide	41.0	2072		3.07	_		1550	Ev	w		w		DE-D	Sapphire excellent in E-beam; forms smooth, hard films. n =
15	Aluminum Phosphide	A1203	2072	-	2.42	-	-	1550	LA	**		**		DE	1.00
14	Aluminum, 2% Silicon	AI2%Si	640		2.69	-	-	1010	-	-	-	-	TiB ₂ -BN	RF, DC	Wire feed and flash. Difficult from dual sources.
16	Antimony	Sb	630	s	6.68	279	345	425	P	Mo,*** Ta***	Mo, Ta	Mo, Ta	BN, C, Al ₂ O ₃	RF, DC	Toxic. Evaporates well.
17	Antimony Oxide	Sb ₂ O ₃	656	s	5.2	-	-	~300	G	Pt		Pt	BN, Al ₂ O ₃	RF-R	Toxic. Decomposes on W. n = 2.09, 2.18, 2.35
18	Antimony Selenide	Sb ₂ Se ₃	611		•	-	-	-		Ta	-		С	RF	Stoichiometry variable.
19	Antimony Sulfide	Sb ₂ S ₃	550		4.64		-	~200	G	Mo, Ta		Mo, Ta	Al ₂ O ₃		No decomposition. n=3.19, 4.06, 4.3
20	Antimony Telluride	Sb ₂ Te ₃	629		6.5	-	-	600	-	-	-	-	С	RF	Decomposes over 750°C.
21	Arsenic	As	817	s	5.73	107	150	210	P	с	-	-	Al ₂ O ₃ , BeO, VC	-	Toxic. Sublimes rapidly at low temperature.
22	Arsenic Oxide	As ₂ O ₃	312		3.74	-	-	-	-	-	-	-	-	-	-
23	Arsenic Selenide	As ₂ Se ₃	~360		4.75	-	-	-	-	-	-	-	Al ₂ O ₃ , Q	RF	-

EvoVac

Thermal Evaporation Sources

- Filament, box, boat or rods are acceptable
- Useful links:

Research

Institute

Georgia

Tech

- <u>http://www.lesker.c</u> <u>om/newweb/menu_</u> <u>evapsources.cfm</u>
- <u>http://www.lesker.c</u> <u>om/newweb/Evapor</u> <u>ation_Sources/Eva</u> <u>poration_TempVSP</u> <u>ower.ctm?pgid=0</u>

Source Sizing Guide

\setminus	<u>Åmod</u>	Nexdep	<u>EvoVac</u>	Covap
Overall length:				
without clamp extension	3.25in to 3.50in	2.89in to 3.50in	3.10in to 3.65in	3.25in to 3.50in
with clamp extension	1.75in to 2.00in	1.61in to 2.20in	1.75in to 2.40in	1.75in to 2.15in
Body Length:				
without clamp extension	2.7in or less	2.40in or less	2.50in or less	2.7in or less
with clamp extension	1.30in or less	1.15in or less	1.35in or less	1.35in or less
Width:	1.125in or less	1.00in or less	1.00in or less	1.00in or less

EvoVac

- Sputter sources:
 - Aluminum
 - SiO2
 - AI2O3

Research

ໄກສະນຳໃນປະສ

- TiN
- Ni

Georgia

- 3 inch sputter targets. Foils accpetable
- Maximum thickness 3/8"
- <u>http://www.lesker.com/new</u> web/menu_depositionmater ials.cfm?section=targets&in it=skip

- Sputter gases:
 - Ar, N
- Rates ~ 1-10Å/s
- Processing parameters not fully explored

MBE and IAD

- Molecular Beam Epitaxy (MBE)
 - Ultra high vacuum deposition technology with single atomic layer thickness control: single crystal, polycrystalline and amorphous materials
 - Vacuum enables in-situ characterization techniques and low contamination
 - Mix of PVD and CVD (CBE) with use many sources simultaneously
 - Can deposit elemental, binary, ternary and quaternary compounds along with electrical and optical dopants over an 8 order of magnitude concentration range
- Ion Assisted Deposition (IAD)
 - PVD technique with the addition of an ion assist
 - Reactive evaporation possible to add extra amount of constituent or additional constituent
 - Ion assist provides energy to deposition surface to modify properties of material: stress, density, crystallinity, etc. Can replace the use of substrate temperature enabling good quality films to be deposited at low temperatures (e.g., for plastic substrates)

MBE

- Two MBE Systems
- Up to eight thermal evaporation or gas sources simultaneously
- Two sputtering sources
- Nitrogen plasma source for reactive deposition
- Substrates to 2" diameter, substrate temperature to ~800C
- BaAICdZnGaHgCaSrSSeTeF; GaAIN, Si,Mn,AI,Ag,Ce,Pb,Cu,Eu

MBE

Single Crystal Material

Georgia Research

, Research

Polycrystalline Material

IAD

- Four thermal and one four-pocket or rotatable crucible electron beam
- Inert (Ar) and reactive (H₂S, O₂, N₂) ion assist, 50-150eV energy
- Gas scrubber on exhaust to handle toxic gases
- Deposition area 1m diameter, rates to 5nm/s
- Substrate temperature to 350C,or to 800C over 10" diagonal non-rotating area

IAD

- Materials deposited include metals, sulfides, selenides, oxides, oxysulfides, nitrides and oxynitrides covering optical regimes from the LWIR to the UVC and electrical regimes from high κ dielectrics to transparent conductors
- ZnSrCaGaSSe; YLaGdOS, YSiAlGeTaTiZnPbZrBalnSn:O; Pb, Cu, Ce,Ag,Tb,Eu,Pt,Pd,Mn; SiAlON; Fl,Cl

Glancing Angle Deposition

Crystalline Deposition

Georgia

Tech

Research

Institute

IAD

IAD SiO₂/Ta₂O₅/SiO₂ layers exhibiting smooth amorphous character

IAD SiO₂ layers exhibit very smooth surface character – Area RMS = 0.251nm

Deposition Tools at Georgia Tech Nanotechnology Research Center

STS PECVD 2

Georgia / Research

Tech

Institute

- Location: Petit Cleanroom
- Films:
 - **SiO2**
 - Si3N4
 - SiON
- Trained Users:
 - Stephan Turano
- Wafer Size: 4"
- Deposition rate varies based on conditions. Std. SiO2 rate ~420Å/min

STS PECVD 1

- Location: Petit Cleanroom
- Films:
 - **SiO2**
 - Si3N4
- Trained Users:
 - Stephan Turano
- Wafer Size: 2,3,4,5,6"
- Older system, software is less intuitive than STS 2

Unaxis PECVD

- Location: Petit Cleanroom
- Films:

Georgia

- SiO2
- Si3N4
- SiOx
- Trained Users:

Research

Tech () Institute

- Michelle Gaines, Justin Ngyuen (?), Stephan Turano
- Wafer Size: Large deposition electrode: up to 5 -3", 4 4" wafers or a single 6" wafer
- Offers more ability to control film stresses than either STS tool

CVC E-beam 2

Georgia / Research

Tech

ແມ່ນເປັນເປັນ

- Location: Petit Cleanroom
- Materials:
 - Metals and Dielectrics
 - MiRC has Al, Au, Ni, Ti, Cu, Cr and others
- Trained Users:
 - Stephan Turano, Graham Sanborn, Jack Flicker, Michelle Gaines (?)
- Wafer Size: Up to 8" samples are possible
- Rate is typically 1-3Å/s. Full pumpdown takes ~30-60min, can achieve 5x10⁻⁷ Torr
- Maximum reservation time is 3 hours peak. 3 days advance maximum

CVC E-beam 1

Institute

Tech

- Location: Petit Cleanroom
- Materials:
 - Metals only
 - MiRC has Al, Au, Ni, Ti, Cu, Cr, SiO2, Al2O3, In, Fe, W and others
- Trained Users:
 - Stephan Turano, Graham Sanborn, Jack Flicker, Michelle Gaines (?)
- Wafer Size: Up to 8" samples are possible
- Rate is typically 1-3Å/s. Full pumpdown takes ~30-60min, can achieve 5x10⁻⁷ Torr
- More frequently used than CVC 2, generally quicker pumpdown times
- Maximum reservation time is 3 hours peak. 3 days advance maximum

PlasmaTherm PECVD

- Location: Petit Cleanroom
- Materials:
 - SiO2
 - Si3N4
 - SiON
- Trained Users:
 - Jack Flicker
- Wafer Size: Up to 6" wafers are possible
- Rate is typically 100-400Å/min.

ALD 1

- Location: Petit Cleanroom
- Films:
 - Al_2O_3
- Trained Users:
 - Stephan Turano
- Wafer Size: Single wafer up to 6".
- There was a second system which was capable or SrO₂ TiO₂ and SrTi that has been offline for several months
- Deposits single atomic layer of material in one cycle. Each cycle is roughly 30-40 s.
- 1000Å takes ~ 7 hours

ELECTRO-OPTICAL SYSTEMS

CHA 2 E-beam Evaporator

- Location: Marcus Cleanroom
- Films:
 - Metals: Ti, Al, Cr, Ni, Cu, Au, etc
- Trained Users:
 - Stephan Turano, Graham Sanborn, Jack Flicker(?), Michelle Gaines
- Wafer Size: Three 4" wafers can be simultaneously processed. Capable of Several 3" wafers as well .
- Rate is typically 1-3Å/s. Full pumpdown takes ~15-20min, can achieve 2x10⁻⁷ Torr
- Maximum reservation time is 3 hours peak. 3 days advance maximum
- Used much less frequently than CVC E-beams

26

0

1 111

CHA 1 E-beam Evaporator

- Location: Marcus Cleanroom
- Films:
 - Dielectrics: TiO2, Al2O3, ZnO, SiO2,
 - Trained Users: Stephan Turano,
- Wafer Size: Three 4" wafers can be simultaneously processed. Capable of Several 3" wafers as well .
- Rate is typically 1-3Å/s. Full pumpdown takes several hours, can achieve 2x10⁻⁶ Torr
- Maximum reservation time is 24 hours peak. 3 days advance maximum
- Used much less frequently than CVC E-beams
- Have not done much work on this tool; film quality is very poor

Cambridge Nanotech Fiji Plasma ALD

- Location: Marcus Cleanroom
- Films:
 - Dielectrics: TiO2, Al2O3, ZnO, HfO2, ZrO
 - Metals: Platinum, more planned for future
- Trained Users: Stephan Turano
- Wafer Size: Up to three 4" wafers can be simultaneously processed. Stage size is capable of 8 inch wafer
- Can run at 250°C or lower. Plasma pulsing available for unusual films. Significant number of exotic materials can be deposited, but will require lots of process tuning.
- Maximum reservation time is several days.
- 1000Å Al2O3 takes ~5h30m

Denton Explorer and Denton Discovery

Denton Explorer – E-beam evaporator – metal deposition

Georgia Research

- Location: Marcus Cleanroom
- Films: unsure
- Trained
 Users: None
- Used much less frequently than CVC Ebeams and Petit Sputterers
- Training sessions infrequent

Denton Discovery – RF/DC sputterer – metal, dielectric

Other clean room deposition tools

Oxford ICP PECVD (Marcus) - Marcus Inorganic Cleanroom

Etch Tools within MNG and GT

STS Pegasus DRIE (Bosch Process for Si)

STS ICP RIE for III-V Semiconductors

Plasma-Therm ICP - Pettit Cleanroom

Plasma-Therm RIE - Pettit Cleanroom

Plasma-Therm SLR RIE - Pettit Cleanroom

STS AOE - Pettit Cleanroom (advanced oxide etcher)

STS ICP - Pettit Cleanroom

STS SOE - Pettit Cleanroom (standard oxide etcher)

STS Pegasus - Pettit Cleanroom (not pictured)

Trion ICP - Pettit Cleanroom

Vision RIE2 - Pettit Cleanroom

Vision RIE1 - Pettit Cleanroom

Georgia | Research Tech | Institute

Oxford RIE 1 - Marcus Inorganic Cleanroom

